A combined Kalman filter and natural gradient algorithm approach for blind separation of binary distributed sources in time-varying channels
نویسندگان
چکیده
A combined Kalman lter (KF) and natural gradient algorithm (NGA) approach is proposed to address the problem of blind source separation (BSS) in time-varying environments, in particular for binary distributed signals. In situations where the mixing channel is nonstationary, the performance of NGA is often poor. Typically, in such cases, an adaptive learning rate is used to help NGA track the changes in the environment. The Kalman lter, on the other hand, is the optimal minimum mean square error method for tracking certain non-stationarity. Experimental results are presented, and suggest that the combined approach performs signi cantly better than NGA in the presence of both continuous and abrupt non-stationarities.
منابع مشابه
Design and Implementation of a Kalman Filter-Based Time-Varying Harmonics Analyzer
Nowadays with increasing use of numerous nonlinear loads, voltage and current harmonics in power systems are one of the most important problems power engineers encounter. Many of these nonlinear loads, because of their dynamic natures, inject time-varying harmonics into power system. Common techniques applied for harmonics measurement and assessment such as FFT have significant errors in presen...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملTime-Varying Frequency Fading Channel Tracking In OFDM-PLNC System, Using Kalman Filter
Physical-layer network coding (PLNC) has the ability to drastically improve the throughput of multi-source wireless communication systems. In this paper, we focus on the problem of channel tracking in a Decode-and-Forward (DF) OFDM PLNC system. We proposed a Kalman Filter-based algorithm for tracking the frequency/time fading channel in this system. Tracking of the channel is performed in the t...
متن کاملMonetary Policy Reaction Functions in Iran: An Extended Kalman Filter Approach
Estimates of instrumental rules can be utilized to describe central bank's behavior and monetary policy stance. In the last decade, considerable attention has been given to time-varying parameter (TVP) specification of monetary policy rules. Constant-parameter reaction functions likely ignore the impact of model uncertainty, shifting preferences and nonlinearities of policymaker's choices. This...
متن کامل